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Sets of affine functions satisfying Moczyfiski orthogonality postulate and defined 
on compact convex sets of states are examined. Relations between affine 
M~czyfiski logics and Boolean algebras when the set of states is a Bauer simplex 
(classical mechanics, some models of nonlinear quantum mechanics) are studied. 
It is shown that an affine Moczyfiski logic defined on a Bauer simplex is a 
Boolean algebra if it is a sublattice of a lattice consisting of all bounded affine 
functions defined on the simplex. 

1. I N T R O D U C T I O N  

M0czyfiski (1973b, 1974) intensively studied sets of  functions L, de- 
fined on the set of  all states S and taking values in the interval [0, 1], that 
satisfy the or thogonal i ty  postulate:  

For  every or thogonal  sequence of functions {f/} C_L there exists a 
function f E  L such that  f +  fl  + f 2  + . . . .  Is ,  

where the sequence (f~)C_ L is called or thogonal  if f , ( x ) +  ~ ( x ) ~ l  for all 
i :/: j and all x ~ S and a one-element  sequence is by definit ion orthogonal .  
0 s and 1 s denote  throughout  the paper  the constant  funct ions equal  0 and I 
for  all x E S, respectively. The  impor tance  of sets of  funct ions satisfying the 
or thogonal i ty  postula te  follows f rom the theorem proved by M0czyfiski 
(1973b): Every set of  functions L C_ [0, 1] s that  satisfies the or thogonal i ty  
postula te  is an o r thomodu la r  a -o r thocomplemen ted  part ial ly ordered set 
admit t ing full set of  probabi l i ty  measures  with respect  to the natural  order  
( f < - g  iff f ( x ) < - g ( x )  for all x G S )  and complemen ta t ion  f ' = l - f  and 
conversely, for every o r thomodu la r  o -o r thocomplemented  part ial ly ordered 
set L '  with a full set of  probabi l i ty  measures  there exists a set of funct ions L 
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satisfying the orthogonality postulate and isomorphic to L'. Thanks to these 
properties any func t ion f~  L can be interpreted as a probability distribution 
induced on S by a pair (A, E)  consisting of an observable A and a Borel 
subset E of the real line in such a way that f ( x ) =  p(A, x, E) for every x E  S 
and p(A, x, E) is the probability that a measurement of A will lead to a 
value in E when the system is in the state x (Mackey, 1963). Following the 
terminology used in the quantum logic approach to quantum mechanics we 
adopt the following definition: 

Definition 1. A set of functions L C[0, 1] s satisfying the orthogonality 
postulate is called a M~czyfiski logic. 

In the original Moczyflski works (1973b, 1974) there are no other restric- 
tions imposed on the set of functions L as well as on the set of physical 
states S. In our work, however, the sets of states S are compact convex 
subsets of a Hausdorff locally convex real topological vector space (shortly: 
compact convex sets) and the sets of functions L C_[0, 1] s satisfying the 
orthogonality postulate consist of affine functions only. The assumption 
about convexity of the set S follows from the fact that we claim any convex 
combination of states to be again a state of the system. Extreme points of 
the convex set S obviously represent pure states. The subset of S consisting 
of all its extreme points will be denoted by exS. If a function f is to be 
interpreted as giving numerical results of measurements of any measurable 
physical quantity then the function f should be affine since values that f 
takes on mixed states should be compatible with values that f takes on their 
components. The base of the locally convex Hausdorff topology ~- of the 
vector space V surrounding S, that we work with, consists of all sets of the 
form 

~ ..... A,,;el,e2 ..... en)= ~2] ( x ~ V : K A i , x ) - - ( A i , x o ) l < e i )  

(1) 

where x0E V, (A l . . . . .  A,} is a finite set of measurable physical quantities, 
(A i, x )  for x E S denotes the mean value of the quantity Ai when the system 
is in the state x, and (A~, �9 ) is the unique linear extension to the space V of 
the affine functional defined on S in such a way (see Gudder, 1979, 
Posiewnik and Pykacz, 1981). If x, x0~ S then the numbers e~ are interpre- 
ted as experimental errors made when one measures mean values of A~s. The 
T compactness of the set S or exS follows from finiteness of sequences of 
measurements that one can do in reality investigating the set S or exS. For 
details of these considerations we refer the reader to the works of Gunson 
(1967) or Posiewnik and Pykacz (1981). 
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Convexity and compactness of the set of all states S together with 
compactness of the set of all pure states exS allow one to make use of the 
Choquet theory and represent any state x E S in the form of a vector 
integral with respect to a Radon probability measure/z x concentrated on the 
set of extreme points of S: 

The formula (2) generalizes finite or countable convex combinations of 
pure states to the more realistic infinite case. Generally a measure/ t  x that 
describes the decomposition of a mixed state x into pure ones is not unique; 
however, there is an important class of compact convex sets--infinite-di- 
mensional simplexes for which the uniqueness occurs. It is commonly 
accepted (see, for, example Mielnik, 1974) that mixed states in the classical 
statistical mechanics can be uniquely decomposed into pure ones. Mixed 
states in some nonlinear models of quantum mechanics have the same 
feature (Haag and Bannier, 1978) but the nonuniqueness of decomposition 
of any mixed state into pure ones in the linear quantum mechanics seems 
again to be one of the crucial attributes of this theory (Mielnik, 1974). From 
the �9 compactness of the set exS it follows that exS is z closed, i.e., if a set 
of states is a simplex it is a Bauer simplex. We refer the reader to the book 
of Alfsen (1971) for all notions concerning the Choquet theory. 

2. AFFINE IVL~CZYlqSKI LOGICS ON COMPACT CONVEX SETS 

It is obvious that the orthogonality postulate cannot be satisfied by an 
arbitrary set of functions. The most simple examples of (not necessarily 
affine) M0czyfiski logics are the two-element logic L2(X) = {0 x, 1 x} and the 
four-element logic L4(X ) = {0 x, f ,  f ' =  1 x -  f ,  Ix}, where X denotes the 
arbitrary set. The more sophisticated examples of M0czyfiski logics are not 
so easy to find, especially when the set X that functions are defined on is 
multidimensional. The following theorem may be of some help to it. 

Theorem 1. Let S be a compact convex set such that exS is closed. 
The set L c C_ [0, 1] s consisting of all affine functions that take on 
the extreme points of S values 0 or 1 only is a Moczyfiski logic. 

Proof. Since the constant function 0 s belongs to L c and together with 
any function f E L c  the function f ' =  1 s - f  belongs to L,,  it is sufficient to 
show that the sum of any orthogonal sequence of functions F = (f l ,  f2 . . . .  } 
C_ L~ belongs to L c (see Moczyfiski, 1974). We denote by Yi a subset of exS 
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on which a function f~ E F does not vanish: 

Yi = {Y~  exS: f i (Y)  4= 0} : { y ~  exS: f / (y )  = 1} (3) 

The orthogonality of the sequence F implies disjointness of any pair of sets 
Y,, Y1 when i4: j .  For any x E S we obtain with the aid of Choquet's 
theorems 

f / ( x ) =  ~] yldl'tx : E = tt.,(Yi) 
i = 1  i = 1  x i = 1  i = 1  

(,6, ) g. <t, AexS) =1 (4) 

and since all functions f E F are nonnegative, the sum Y~ tf/(x) is an affine 
function. For any y E  exS we have: 

i if 'v' f ~ ( y ) = 0  
f / (y )  = Le F 

i : ,  if A~ Ff/(Y) = 1 
(5) 

so the sum Y,~= Lf belongs to L c and the proof is finished. �9 
Theorem 1 can also be proved when one assumes that S is metrizable 

instead that exS is closed, but physical justification of such an assumption 
seems to be much more difficult than physical justification of closedness of 
exS. 

According to the interpretation of classical statistical mechanics in 
terms of quantum logic notions (Mackey, 1963) every observable A is 
represented by a real Borel function F A defined on the phase space F, every 
state x is represented by a probability measure a,. on F, and for any Borel 
subset E of the real line 

p( A, x, f )= rs E)] (6) 

Pure states are represented by probability measures concentrated on one- 
point subsets of F (Dirac measures), so if we follow Moczyfiski (1974) and 
assume that every function f E  [0, 1] s is generated by a pair (A, E ) in such a 
way that 

f ( x )  = hA, E)(x) = p ( A ,  x, E)  (7) 
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then for any pure state yE exS represented by a Dirac measure 8~ con- 
centrated on the one-point subset {37} c F we obtain 

f(y)= 1 

if37 ~ FA- I(E) 
(8) 

if37E fA- t (E)  

therefore Theorem 1 can be applied in the case of classical statistical 
mechanics to affine functions that map a set of states onto [0, l] as soon as 
the assumption (7) is fulfilled. We shall examine affine Moczyfiski logics 
defined on sets of classical states more carefully in the following section. 

3. AFFINE M~CZYNSKI LOGICS ON BAUER SIMPLEXES 

There are two main properties that distinguish classical statistical 
systems from quantum systems: 

(i) In a classical statistical mechanics all observables are simulta- 
neously measurable. 

(ii) Every state of a classical statistical system can be uniquely decom- 
posed into pure states. 

Property (i) can be mathematically expressed by saying that the logic of 
a classical system is a Boolean algebra (Mackey, 1963), whereas property (ii) 
suggests that the set of states of a classical statistical system is an infinite- 
dimensional simplex (Mielnik, 1974; Posiewnik and Pykacz, 1981) and 
from the topological considerations it follows that it is exactly a Bauer sim- 
plex, i.e., the set of its extreme points is closed. Consequently, an affine 
M~tczyflski logic defined on a Bauer simplex should be a Boolean algebra. 
Since we deal with functions that map a set of states into [0, l] we adopt the 
following definition: 

Definition 2. Let A C [0, l] s be a set of functions from S ~ ' i n t o  [0, 1]. 
We say that A is a numerical Boolean algebra if A is a Boolean algebra with 
respect to the natural order (f<<-g iff f(x)<<.g(x) for all x@S) and 
complementation f '  = 1 s - f and if f V g = f + g for f A g = A s = 0s- 

The notion of a numerical Boolean algebra was introduced by Moczyflski 
(1973a). He showed that every Boolean algebra can be isomorphically 
represented as a numerical Boolean algebra. 

Every o-complete Boolean algebra is an orthomodular o-orthocomple- 
mented poset admitting a full set of probability measures; therefore from 
the M~czyfiski (1973b) theorem one obtain the following corollary: 
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Corollary 1. Every o-complete Boolean algebra can be isomorphi- 
cally represented as a Moczyfiski logic. Every o-complete numerical 
Boolean algebra is a Mgczyfiski logic. 

The second part of Corollary 1 follows from constructions presented in 
Moczyhski papers (1973a, 1973b). In our considerations we will use the 
following theorem, which is also due to M{~czyfiski. 

Theorem 2. (Moczyflski, 1974; proof in Moczyfiski, 1973a). A 
Moczyhski logic L is a o-complete numerical Boolean algebra if and 
only if for any fl ,  f 2 ~ L  there are gl, gz, g3 in L such that 
gl + g2 -k g3 ~< 1s and fl = g) + g2, f2 = g2 + g3- 

Let K be a Bauer simplex. The vector space ~b(K)  consisting of all 
bounded affine functions defined on K is a vector lattice (see, for example, 
Alfsen, 1971); therefore it is natural to investigate such affine Moczyhski 
logics defined on K which are sublattices of 6~b(K). Indeed, for such logics 
the following theorem is valid. 

Theorem 3. Let K be a Bauer simplex. If a Mgtczyfiski logic L C_ 
[0, I] K is a sublattice of ~b(K) then it is a o-complete numerical 
Boolean algebra. 

In the proof of Theorem 3 we shall use the following lemmas. 

Lemma 1. If K is a Bauer simplex, then 

V f <~ g '~ flexK ~ glexK (9) 

Where F I exK denotes the restriction of a function f to the set exK 
consisting of all extreme points of a simplex K. 

Proof. If f lexK <" g[ exK then for any x E K we obtain by the Choquet 
theorems 

The converse implication is obvious. �9 

Lemma 2. If K is a Bauer simplex, then for any f,  gE  ~b(K)  the 
following statements are valid: 

(i) The meet of f and g in the lattice ~b(K)  is the affine and 
continuous extension to the whole set K of the function 
min(f ,  g) restricted to the exK. 
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(ii) The join of f and g in the lattice ~b(K)  is the affine and 
continuous extension to the whole set K of the function 
max(f ,  g) restricted to the exK. 

Proof. The bounded functions f and g are continuous; therefore the 
function min(f ,  g) (which is not in general an affine function) and its 
restriction to the set exK are also continuous. By the Bauer theorem (see, for 
example, Alfsen, 1971) every affine and continuous function defined on the 
extreme points of a Bauer simplex can be uniquely extended to an affine 
and continuous function defined on a whole Bauer simplex. Let us denote 
by h such extension of the function rain(f,  g)[~xr. Consequently h G ~b(K)  
and by formula (9) h ~< f and h ~< g. If d is an arbitrary bounded affi_qe 
function such that d < f and d <~ g, then 

d[exK~f l~K,  dle~K~gl~tr (11) 

so d [ exK ~< min(f ,  g)[exK and by Lemma 1 d ~< h. This finishes the proof of 
part (i). �9 

The proof of part (ii) is analgous. 

Proof of Theorem 3. We shall show that for any fl,  f2 E L there exist 
functions gt, g2, g3 described in Theorem 2. Since L is a sublattice of the 
lattice ~b(K) ,  we can take the meet off~ and f2 as a function g2: 

g2=LAA (12) 

Let us notice that for any x E exK by Lemma 2 we have 

f;(x) + (fl A f2)(x) = 1 --  f t ( x )  + m i n ( f l ( x ) ,  f z ( x ) )  

= { 1 - - f , ( x ) +  f~(x) iffl(x)<~f2(x) 

1-- f , ( x )+  f2(x) if f~(x)> f2(x) 
(13) 

Therefore by Lemma 1 f{ + fl A fz ~< 1 x and by the orthogonality postulate 
there exists in the logic L a function gl such that 

g l = l r - -  f(--  f lA  f2=A- -g2  (14) 

In the similar way we can show that there exists in the logic L a function g3 
such that 

g3 = 1r -- f~ -- fl A fu = f2 -- gz (15) 
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Let us notice that 
gl+g2=fl<~lK 

g3 + g2 = f2 <~ l K (16) 

and that for any x E exK we obtain 

(g, + g3)(x) = f t (x )  + fz(x)--2rnin(f t (x) ,  f2(x)) 

= ~ f t ( x ) +  f 2 ( x ) - 2 f t ( x )  i f f t(x)<~fz(x) 

[ f l ( x ) +  f2 (x ) -2 f2 (x )  i f f , ( x )>  f2(x) 

= I f 2 ( x ) - f l ( x )  iff ,(x)<~f2(x) 

[ f ~ ( x ) - f 2 ( x )  i f f , ( x )>  f2(x) (17) 

so by Lemma 1 gt + g3 ~< 1K and by the orthogonality postulate 

gl + g2 + g3<---1 r (18) 

This finishes the proof of Theorem 3. �9 
The following example shows that Theorem 3 cannot be reversed since 

there exist a Bauer simplex K and a M0czyfiski logic L C[0, 1] r such that L 
is a a-complete numerical Boolean algebra but L is not a sublattice of a 
lattice ~b(K ). 

Example 1. Let K be a closed interval [a, b], a v ~ b. The set K, regarded 
as a compact convex subset of a real line equipped with the natural 
topology, is obviously a Bauer simplex. The set consisting of affine func- 
tions 0 r ,  1 r ,  f and f '=  1 r - f, where 

f ( a ) = O ,  f ( b )=aE( �89  

f [ p a + ( 1 - p ) b ] = p f ( a ) + ( l - p ) f ( b ) = ( 1 - p ) a  V (19) 
pE[0,1] 

is the four-element affine M0czyflski logic L4(K ). It can easily be checked 
that L4(K ) is a lattice in which lattice operations AL and V L are defined as 
follows: 

O K A L f  = O K A L f '  = O K A L 1 K  = f A L f '  = O K 

f A t l r  = f ,  f ' A L l r  = f '  

1 r V t . f =  l r  VLOr = f V L f '  = I r V L f ' =  1 r 

f VL0 r : f ,  f 'VzO r = f '  (20) 
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By the immediate checking Definition 2 or assumptions of Theorem 2 it can 
be shown that L4(K ) is a o-complete numerical Boolean algebra but the 
join f V f '  of f and f '  in the lattice ~b(K)  is an affine extension onto K of 
the function that takes value 1 on the point a and value a on the point b; 
therefore 

( f  V f ' ) ( b ) = a # l = ( f  V L f ' ) ( b  ) (21) 

so the logic L4(K ) is not a sublattice of a lattice (~b(K). 

The logic in Example 1 is a lattice and it is a numerical Boolean 
algebra. The next example shows, however, that not every affine M~tczyflski 
logic defined on a Bauer simplex that is a lattice is a numerical Boolean 
algebra. 

Example 2. Let K be the same set as in Example 1 and let add to the 
logic that was described in the previous example two functions g and g'  
such that g ( x ) =  g ' ( x ) =  1 /2  for any x ~  K. It is easy to check that the set 
L = L a ( K ) U  (g, g'} obtained in such a way is again an affine M0czyfiski 
logic in which { f , f ' }  and (g,g'} are the only nontrivial orthogonal 
sequences. L is a lattice but it is not a sublattice of ~b(K)  for the same 
reasons as a logic in the Example 1. L is not a numerical Boolean algebra 
s ince f  ALg=O r b u t f  V L g = I  K4  = f + g .  

Finally we shall examine the affine M0czyfiski logic described in 
Theorem 1 in the case when it is defined on a Bauer simplex. We shall show 
that it fulfills assumptions of Theorem 3 so we obtain the following 
corollary. 

Corollary 2. Let S be a Bauer simplex. The set Lr C_[0, 1] s consist- 
ing of all affine functions that take on the extreme points of S 
values 0 or 1 only is a o-complete numerical Boolean algebra. 

Proof. Let VL c, /XLo and V, /~ denote lattice operations in the logic L c 
and in the lattice ~b(S), respectively. For any f ,  g ~  L c the affine functions 
f / ~  g and f X/g belong to Lc since by Lemma 2 for any x E exS we have 

(f  A g)(x)=min(f(x), g(x)) E {0, 1) 

( f  V g) (x)=max( f (x) ,  g(x)) E {0, 1} (22) 

Of course f A g ~< f ,  g <~ f V g, which implies inequalities 

f Ag<~f AL~g , fVL~g<~fV g (23) 
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b u t L ~ C ~ b ( S ) ; t h e r e ~ r e w e h a v e ~ s o  

f A L c g ~ f A g ,  f V g ~ f V L ~ g  (24) 

F r o m  the formulas  (23) and (24) we ob ta in  f ALcg = f A g, f VLcg = f V g. 
This finishes the proof .  

Coro l la ry  2 shows that  the set Lc satisfies main  condi t ions  for be ing  a 
model  of a logic associa ted  with a classical  system. The  index " c "  = " c l a s s i -  
cal"  in L~ was chosen because  of  this fact. 
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